首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43篇
  免费   6篇
  国内免费   1篇
化学   34篇
力学   2篇
数学   6篇
物理学   8篇
  2021年   2篇
  2020年   3篇
  2017年   1篇
  2016年   2篇
  2015年   2篇
  2014年   4篇
  2013年   1篇
  2012年   2篇
  2011年   4篇
  2010年   2篇
  2009年   1篇
  2007年   2篇
  2006年   2篇
  2005年   2篇
  2004年   1篇
  2002年   1篇
  2001年   4篇
  2000年   1篇
  1999年   1篇
  1989年   1篇
  1983年   2篇
  1981年   1篇
  1977年   1篇
  1974年   1篇
  1970年   1篇
  1967年   2篇
  1963年   1篇
  1961年   2篇
排序方式: 共有50条查询结果,搜索用时 234 毫秒
31.
N-Acetyl-proline-methylamide (APMA) was synthesized by the mixed anhydride method and investigated by IR. spectroscopy and chemical relaxation measurements. The temperature-induced variation of the IR. absorption bands of the internally hydrogen bonded (b) and of the extended, unbonded (e) species at 3330 and 3450 cm?1 respectively, were used to evaluate the molar absorptivities, a(b) = 280 and a(e) = 50 l/mol · cm, the equilibrium constant K = 0.70, and the molar enthalpy of reaction ΔH = ? 2280 ± 60 cal/mol. The entropy was estimated to be in the range ? 8 to ? 9 e.u. The reaction rates of this conformational transition were measured by the chemical dipole field effect. The relaxation time of the rate process is τ = 2.7 · 10?9s, the rate constant for the formation of the hydrogen bond k(b) is 2.2 · 108 s?1, and that for the unfolding accompanied by the breakage of the amide hydrogen bond k(e) is 1.5 · 108s?1.  相似文献   
32.
Aspergillus is one of the most diverse genera, and it is chemically profound and known to produce many biologically active secondary metabolites. In the present study, a new aspochalasin H1 (1), together with nine known compounds (2–10), were isolated from a Hawaiian plant-associated endophytic fungus Aspergillus sp. FT1307. The structures were elucidated using nuclear magnetic resonance (NMR) (1H, 1H-1H COSY, HSQC, HMBC, ROESY and 1D NOE), high-resolution electrospray ionization mass spectroscopy (HRESIMS), and comparisons with the reported literature. The absolute configuration of the new compound was established by electronic circular dichroism (ECD) in combination with NMR calculations. The new compound contains an epoxide moiety and an adjacent trans-diol, which has not been reported before in the aspochalasin family. The antibacterial screening of the isolated compounds was carried out against pathogenic bacteria (Staphylococcus aureus, Methicillin-resistant S. aureus and Bacillus subtilis). The antiproliferative activity of compounds 1–10 was evaluated against human breast cancer cell lines (MCF-7 and T46D) and ovarian cancer cell lines (A2780).  相似文献   
33.
34.
A multilayer planar structure comprising a highly reflective multilayer dielectric mirror and a corrugated waveguide is proposed for use as a narrow passband optical filter. The proposed filter has a much narrower linewidth than a usual Fabry–Perot cavity with two multilayer dielectric mirrors. It is shown that the narrowing of the linewidth is due to the strong spectral dependence of the phase of the wave reflected from the waveguide grating mirror. The shape of the pass band can be made symmetrical by a proper choice of the grating groove profile.  相似文献   
35.
36.
Nitrite has recently been recognized as a storage form of NO in blood and as playing a key role in hypoxic vasodilation. The nitrite ion is readily reduced to NO by hemoglobin in red blood cells, which, as it happens, also presents a conundrum. Given NO’s enormous affinity for ferrous heme, a key question concerns how it escapes capture by hemoglobin as it diffuses out of the red cells and to the endothelium, where vasodilation takes place. Dinitrogen trioxide (N2O3) has been proposed as a vehicle that transports NO to the endothelium, where it dissociates to NO and NO2. Although N2O3 formation might be readily explained by the reaction Hb‐Fe3++NO2?+NO?Hb‐Fe2++N2O3, the exact manner in which methemoglobin (Hb‐Fe3+), nitrite and NO interact with one another is unclear. Both an “Hb‐Fe3+‐NO2?+NO” pathway and an “Hb‐Fe3+‐NO+NO2?” pathway have been proposed. Neither pathway has been established experimentally. Nor has there been any attempt until now to theoretically model N2O3 formation, the so‐called nitrite anhydrase reaction. Both pathways have been examined here in a detailed density functional theory (DFT, B3LYP/TZP) study and both have been found to be feasible based on energetics criteria. Modeling the “Hb‐Fe3+‐NO2?+NO” pathway proved complex. Not only are multiple linkage‐isomeric (N‐ and O‐coordinated) structures conceivable for methemoglobin–nitrite, multiple isomeric forms are also possible for N2O3 (the lowest‐energy state has an N? N‐bonded nitronitrosyl structure, O2N? NO). We considered multiple spin states of methemoglobin–nitrite as well as ferromagnetic and antiferromagnetic coupling of the Fe3+ and NO spins. Together, the isomerism and spin variables result in a diabolically complex combinatorial space of reaction pathways. Fortunately, transition states could be successfully calculated for the vast majority of these reaction channels, both MS=0 and MS=1. For a six‐coordinate Fe3+O‐nitrito starting geometry, which is plausible for methemoglobin–nitrite, we found that N2O3 formation entails barriers of about 17–20 kcal mol?1, which is reasonable for a physiologically relevant reaction. For the “Hb‐Fe3+‐NO+NO2?” pathway, which was also found to be energetically reasonable, our calculations indicate a two‐step mechanism. The first step involves transfer of an electron from NO2? to the Fe3+–heme–NO center ({FeNO}6) , resulting in formation of nitrogen dioxide and an Fe2+–heme–NO center ({FeNO}7). Subsequent formation of N2O3 entails a barrier of only 8.1 kcal mol?1. From an energetics point of view, the nitrite anhydrase reaction thus is a reasonable proposition. Although it is tempting to interpret our results as favoring the “{FeNO}6+NO2?” pathway over the “Fe3+‐nitrite+NO” pathway, both pathways should be considered energetically reasonable for a biological reaction and it seems inadvisable to favor a unique reaction channel based solely on quantum chemical modeling.  相似文献   
37.
Hydrogenation catalysts involving abundant base metals such as cobalt or iron are promising alternatives to precious metal systems. Despite rapid progress in this field, base metal catalysts do not yet achieve the activity and selectivity levels of their precious metal counterparts. Rational improvement of base metal complexes is facilitated by detailed knowledge about their mechanisms and selectivity‐determining factors. The mechanism for asymmetric imine hydrogenation with Knölker’s iron complex in the presence of chiral phosphoric acids is here investigated computationally at the DFT‐D level of theory, with models of up to 160 atoms. The resting state of the system is found to be an adduct between the iron complex and the deprotonated acid. Rate‐limiting H2 splitting is followed by a stepwise hydrogenation mechanism, in which the phosphoric acid acts as the proton donor. C?H ??? O interactions between the phosphoric acid and the substrate are involved in the stereocontrol at the final hydride transfer step. Computed enantiomeric ratios show excellent agreement with experimental values, indicating that DFT‐D is able to correctly capture the selectivity‐determining interactions of this system.  相似文献   
38.
39.
The chemical equilibrium of mutual interconversions of tert-alkyl-benzenes was studied in the temperature range (286 to 423) K using chloroaluminate ionic liquids as a catalyst. The knowledge of the activity coefficients is required in order to obtain the thermodynamic equilibrium constants Ka. A well established procedure, COSMO-RS, has been used to assess activity coefficients of the reaction participants in the liquid phase. Enthalpies of five reactions of isomerisation and transalkylation of tert-alkyl-benzenes were obtained from temperature dependences of the corresponding equilibrium constants in the liquid phase. For the sake of comparison, high-level ab initio calculations of the reaction participants have been performed using the Gaussian-03 program package. Absolute electronic energy values of the molecules have been obtained using B3LYP and G3MP2 level. Using these results enthalpies of reaction of isomerisation and transalkylation of tert-alkyl-benzenes in the liquid phase based on the first principles are found to be in good agreement with the data obtained from the thermochemical measurements.  相似文献   
40.
Chitosan (CH) is one of the most abundant biopolymers with multiple applications. Polyvinyl pyrrolidone (PVP) has specific binding and detoxification properties that are of great interest in health care. Hence, it arises a crucial urge to develop economic sensors to analyze CH and PVP in pharmaceutical formulations and biological samples. Two portable sensors were fabricated using precipitation-based technique, and nanoparticles-based technique, for determination of CH and PVP in sensor 1 and 2; respectively. Linear responses of 10−5 to10−7 M and 10−2 to10−7 M at pH 3.6–4.8 and 7.2–8.4, with ideal Nernstian slopes of 60.00 and 59.83 mV /decade, and nanomolar LODs of 94.90 and 81.20 nM were observed for CH and PVP; respectively. The percentage recoveries were 100.40±1.03 and 100.19±0.64 for sensors 1 and 2; respectively. Both sensors were successfully applied in biological fluids without pre-treatment. Accurate results were obtained using sensor 1, in pure form, pharmaceutical formulations, human plasma, rat liver and rat brain, as well as sensor 2, in pure form, pharmaceutical formulations and urine samples. The results were statistically compared with the reported methods and no significant difference was observed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号